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Abstract. The generalization performance of a multi-state and a graded response layered
attractor neural network trained with examples of low activity is established exactly for
monotonic and non-monotonic input/output functions. Complex behaviour is found which
goes from fixed-point attractors to chaos through a cascade of bifurcations, depending on
an appropriate threshold or cut-off parameter. The effect of the irregular behaviour on the
generalization curves is explicitly demonstrated and phase diagrams for the recognition ratio
of conceptsα in terms of the threshold/cut-off exhibit ordered (generalization), disordered
(paramagnetic or self-sustained activity) and chaotic phases.

1. Introduction

The generalization ability of perceptrons has been the subject of much interest in recent
works in the context of learning an unknown rule [1–3]. The main point is to establish how
well the network recognizes correct outputs when it is exposed tonew examples if it has
been trained with a closed pair of examples-correct outputs. In contrast, generalization in
an attractor neural network is a different problem that deals with the ability of a network
to create a representation for concepts through the extraction of common features from a
fixed set of examples to which the network has been exposed in the learning stage. The
concepts may be thought of as the ancestors of a hierarchically correlated set of patterns
[4], which are recognized when they become stable states of the attractor dynamics of the
network and this is possible through the presence of symmetric mixture states with the
stored patterns [5–7]. These are states that have a sizeable common overlap with a finite
number of training examples and they appear already in networks with binary neurons [8].
Such states are responsible for the strong inferential properties in networks with discrete
multi-state neurons trained with low-activity patterns in which there is a finite fraction of
inactive neurons. Indeed, patterns of full activity are generated in such networks through
the merging of low-activity prototype patterns [9, 10].

In a recent work we showed that the generalization ability of an extremely dilute three-
state feedback neural network, with a non-decreasing gain function, can be considerably
improved either by training the network with low-activity examples or by moderately
increasing the threshold beyond which the neurons are active [11]. The purpose of the
present paper is to extend that work in two important aspects. One is the use of a
network with a more complex architecture than the extremely dilute one and the other
is the introduction of non-monotonic gain functions. We consider a layered feedforward
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network with no loops between neurons which is known to have interesting features and
has the property that a deterministic dynamics can be solved exactly [12, 13].

It has recently been found that non-monotonic gain functions are appealing from both
computational and biological points of view. Indeed, the critical storage capacityαc was
found to increase [14] beyond Gardner’s limiting value for binary neuronsαc = 2 [15].
It has been argued that a non-sigmoidal analogue transfer function can implement a local-
stability criterion in a network with binary patterns [16]. On the other hand, it has been
suggested that characteristic features of firing in cortical neurons could be described by a
slanted sigmoidal gain function [17].

The zero-temperature stationary regime of the retrieval dynamics in an extremely dilute
network of analogue neurons, with the Hebbian learning rule and piecewise linear non-
sigmoidal gain functions, has been analysed in a recent work [18]. In addition to fixed-
point attractors, all the steps up to a chaotic behaviour appear for a low loading level of the
network [19]. Our purpose here is to deal with a different task, namely the generalization
dynamics which aims at recognizing the concepts when the network is trained only with
examples of the latter. For the network to be successful in its goal it is important for the
states to escape from the attractors of the stored patterns. Otherwise one would just have
the retrieval behaviour found before.

The generalization task in an attractor neural network can be realized in a manifold of
contexts. First, categorization in its simplest form can be implemented by the use of an
alternative Hebbian learning algorithm which storess examples{ηµνi }sν=1 of the hierarchical
ancestor (the concept){ξµi } on neuroni (i = 1, . . . , N), for eachµ = 1, . . . , p, having
correlation〈ηµνi ξµj 〉 = bδij . The states of the network where the neurons come close to
the recognition of a concept, such that,{σi}Ni=1 ∼ {ξµi }Ni=1, are called thegeneralization
states. The phase transition from a disordered to a generalization phase was found to be
discontinuous withb for a fully connected network [6], or smooth for a diluted network [20].
For sufficiently larges or b, and a not too large ratio of generated concepts,α ≡ p/N , the
generalization error may become small enough to consider that the task has been achieved
successfully, and the network can even turn out to be robust against synaptic noise [7].

In the context of multi-state patterns, generalization takes place through inference. The
coherence between the learned patterns,{ηµi } say, with low activitya ≡ 1

N

∑
i (η

µ

i )
2 � 1,

allows the simultaneous retrieval of patterns on many neurons [9]. Thus, by learning small
patterns, one can infer the existence of a whole pattern, with activitya ∼ 1 and extract
more information than that available in the original patterns.

Here, as in [11], we consider generalization in both contexts. The outline of the paper
is the following. The layered network model for the generalization problem is described
in section 2 for various non-monotonic transfer functions, and recursion relations for the
symmetric mixture states are discussed in section 3. The equations for the dynamics are
obtained in section 4, and the results for the attractors and irregular behaviour are discussed
in section 5. We end with concluding remarks in section 6.

2. The model

We consider a layered feedforward network of neuronsi = 1, . . . , N, with either discrete
or continuous states,σit in each layert , which may also be viewed as a discrete-time index,
that are updated according to a zero-temperature parallel deterministic dynamics given by

σi,t+1 = Fθ(hit ) i = 1, . . . , N. (1)
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Here,Fθ(x) is anyone of the odd transfer functions defined below andθ is the threshold/cut-
off parameter that eventually specifies a deviation from the sign function. The local field at
site i on layert is given by

hit =
N∑
j 6=i

J tij σjt (2)

J tij being the elements of the synaptic matrix between the neuronsi andj in two consecutive
layers. We assume here the modified Hebbian rule

J tij =
1

sb2N

p∑
µ

s∑
ν

η
µν

i,t+1η
µν

jt (3)

whereµ = 1, . . . , p and ν = 1, . . . , s label the concepts and the examples, respectively.
The examplesηµνit are independent identically distributed random variables (IIDRV) built
from theconcepts ξµit through the following stochastic process

η
µν

it = ξµit λµνit (4)

〈λµνit 〉 = 〈ξµit ηµνit 〉 = b > 0 (5)

〈(λµνit )2〉 = a (6)

via the random variablesλµνit , where the concepts are assumed to be IIDRV,ξ
µ

it =+− 1,
with equal probability. Thus,a is the activity of an example, defined above, andb is the
correlation between an example and the concept to which it belongs, while〈ηµνit ηµρit 〉 = b2,
for ν 6= ρ, is the correlation between two examples of the same concept. There is no
correlation between examples of different concepts as well as between a given concept and
the examples of another one. Higher moments ofλ

µν

it are not needed for our purpose.
The pure generalization model is recovered by settingλ

µν

i =+− 1, which amounts to
activity a = 1, with a positive biasb and a binary transfer functionFθ(x). On the other
hand, the pure multi-state model is obtained by taking the number of exampless = 1 and
correlationb = 1. A low activity a � 1 indicates that in many sites the patterns are not
active, that is|ηµνi | 6= 1, with the effective size of the learned patterns beingNe = aN .
Thus, when the activitya is not close to 1, one refers tosmall patterns [10]. In our model
the new point of view is that the small examples are samples of the full activity concepts
that are to be inferred.

The generalization task (inference) is considered successful if the Hamming distance
between the state of the neurons and the conceptsξ

µ

it , at timet , defined as

E
µ

Nt =
1

N

∑
i

|ξµit − σit | (7)

becomes small for large enought . For binary concepts, as we deal here, the Hamming
distance can be directly related to the overlap of the state of the neurons with a concept,

M
µ

Nt =
1

N

∑
j

ξ
µ

jt σjt (8)

throughEµNt = 1−Mµ

Nt . Thus,Eµ will be called thegeneralization error. Note that it
is twice the usual error. A particular solution for the overlap of the state of the network
{σit ; i = 1, . . . , N} with the examples, given by

m
µν

Nt =
1

N

∑
j

η
µν

jt σjt (9)
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determines the generalization phase characterized by the symmetric solution ofs components
of equal overlap. In terms of the overlaps, the local field becomes

hit = 1

sb2

p∑
µ

s∑
ν

η
µν

it+1m
µν

Nt . (10)

and the dynamics of the network requires the study of the evolution of the overlaps from
one layer to the next.

A further relevant quantity is thedynamicalactivity, defined as

Qt = 1

N

∑
i

(σit )
2 (11)

and, to complete the definition of the model, we work here with the following monotonic
and non-monotonic transfer functions. First,

FM3
θ (x) = sgn(x) |x| > θ (12)

and zero otherwise, is the usual monotonic three-state transfer function that leads to the firing
of the neurons if the local field is larger than the thresholdθ . The zero state is responsible
for the low dynamical activity of the network. Next, consider thenon-monotonic three-state
function

FN3
θ (x) = sgn(x) |x| < θ (13)

and zero otherwise. It is assumed here that the neurons stop firing, which may be the case
due to fatigue, when the local field reaches a cut-offθ . Alternatively, one may consider the
non-monotonic two-state function

FN2
θ (x) = sgn(x) |x| < θ

= − sgn(x) |x| > θ. (14)

In addition to the multi-state functions introduced so far, it is of interest to check if eventual
irregular behaviour also appears for graded response neurons and for that purpose we also
consider the non-monotonic analogue function

FNAθ (h) = sin

(
1

θ
h

) ∣∣∣∣1θ h
∣∣∣∣ < π (15)

and zero otherwise, in whichθ is the gain parameter and at the same time a cut-off.

3. The symmetric solution

Since we are interested in the generalization ability of the network, we take a configuration
in which the overlaps of the state of the network with the examples stored in the learning
stage are the symmetric overlaps ofs components, of macroscopic size of O(b) for the
first concept say, and of O( 1√

N
b) for the remaining ones. Noting that the concepts are

uncorrelated random variables, the generalization process becomes a recognition ofp

independent variablesξµi , µ = 1, . . . , p, so that we may concentrate on a single one.
The overlaps with the examples of the remainingp − 1 concepts contribute to the noise
term in the local field. Thus, we may write for any timet ,

m
µν

Nt = bmsNt µ = 1

= b

N
R
µ

Nt µ > 1
(16)
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for ν = 1, . . . , s, where the main and residual overlapsmsNt and RµNt , respectively, are
the same for allν. For simplicity, we assume the initial configuration to have the
same symmetric form. The interesting question of the dependence on a different initial
configuration will be discussed elsewhere [21].

We follow here the signal-to-noise approach to the layered network [13]. In the
thermodynamic limit, equation (9) yields in the first time step, forµ = 1,

mst=1 ≡ lim
N→∞

msNt=1 = 〈〈y1s
t=1ξ

1
t=1Fθ(ht=0)〉s〉ω (17)

according to the law of large numbers (LLN) and it is, thus,i-site independent. Here,
y
µs
t = 1

sb

∑s
ν λ

µν
t , and〈〈. . .〉〉 denotes first the average overy1s

t and then over the noise term
in the local field,

ht=0 = ξ1
t=1y

1s
t=1m

s
t=0+ ω0

ω0 = 1√
N

p∑
µ>1

ξ
µ

t=1y
µs

t=1R
µ

Nt=0

(18)

wheremst=0 is the initial symmetric overlap, andω0 is the initial noise produced by the
p−1 residual symmetric overlaps in equation (16). The first term in the local field favours
an alignment of the states with the first concept. Because of the feedforward architecture
of the network, these equations are reproduced at all time steps.

In the next time step one needs the limit of the residual symmetric overlapsR
µ

t=1 ≡
limN→∞ R

µ

N,t=1 which does not satisfy the LLN because their dispersions are of the same
magnitude as their mean values. Using the central limit theorem (CLT), however, to evaluate
the probability distribution at the first time step yields

lim
N→∞

R
µ

t=1− 〈RµN,t=1〉√
Var(RµN,t=1)

.= Zt=1 (19)

where the brackets denote the average with respect to the examples at the previous layer
(time) and

.= means the convergence in the distribution to the Gaussian random variable
Zt=1

.= N(0, 1), of mean zero and unit variance. The average and variance can be calculated
using the LLN giving respectively,

lim
N→∞
〈RµN,t=1〉 = ARµt=0Ct=1

lim
N→∞

Var(RµN,t=1) = AQt=1
(20)

where

A ≡ 〈(ys)2〉 = 1+ a − b
2

sb2
(21)

and the dynamical variables are

Ct+1 ≡ 〈〈F ′θ (ht )〉s〉ω
Qt+1 ≡ 〈〈[Fθ(ht )]2〉s〉ω.

(22)

The prime denotes derivative with respect to the argument andQt is the dynamical activity,
equation (11). It accounts for the active neurons, and plays a similar role as the spin-glass
order parameter in the thermodynamic equilibrium approach for binary neurons [22].
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4. The macro-dynamics

Sinceω0 is a sum over random uncorrelated variables we may apply the CLT to the sum
in equation (18), to get that the noise in the local field is a Gaussian random variable

ω0/
√
αrt=0A

.= zp = N(0, 1) (23)

as one expects for a feedforward layered network [13], where we have defined the variance
of the residual overlaps, in the limN →∞,

rt ≡ Var(Rµt ). (24)

Then, taking〈Rµt = 0〉, where the brackets here denote the average over the (unknown)
distribution of the limitingRµt , and the corresponding equation for its variance, we obtain

mst+1 = 〈〈ysFθ (3t)〉s〉p
rt+1 = (ACt+1)

2rt + AQt+1

3t = ysmst + zp
√
αrtA

(25)

with the functionsCt,Qt given in equations (22). We have used the odd-property ofFθ to
introduce the new field3t ≡ ξ1ht , recalling thatξ1 is a binary variable. The averages are
now over the two random contributions to the field,ys and zp. Assuming a large number
of examples, says > 10, ys

.= 1+ zs
√
A− 1 with the Gaussian variablezs

.= N(0, 1),
independent ofzp. Then one finds

mst+1 = Mt+1+mst
a − b2

sb2
Ct+1 (26)

where

Mt+1 = 〈〈Fθ(3t)〉zs〉zp (27)

is the generalization overlap with the first concept defined in equation (8). These are the
dynamical equations that have to be solved. We make no restrictions about the values which
the parametersa andb can assume within the(0, 1] interval, except that they must satisfy
a > b2, the equality corresponding to constant microscopic activitiesλ ≡ b.

5. Fixed-point and irregular attractors

The phases associated with fixed-points that can appear are those already present in the
extremely dilute network [11]. Indeed, there is a paramagnetic phase whereM = 0 = Q,
also called the zero phase (Z), a generalization phase (G) with M > 0 andQ > 0 as well
as a self-sustained activity phase (S) with M = 0 andQ > 0 [10, 23]. More interesting,
however, is the presence of irregular attractors corresponding to non-steady macroscopic
phases, that follow from the large-time behaviour of the dynamic equations (25), as will be
discussed below.

First we consider, for reference, the case of the monotonic three-state function,
equation (12), for which there is always a fixed-point behaviour. In the lower part of
figure 1 we show the dependence of the generalization errorE = limN→∞ E

µ

Nt , for µ = 1,
on the threshold in the long-time limit, which is actually reached after a finite number of
steps, as a function of the activitya, for α = 0.01, b = 0.2 and s = 20 examples per
concept. As in the case of the extremely dilute network [11], learning with examples of
a small size yields a better generalization performance, if the threshold is not too large,
than in the case of learning with large examples. The reason for this is that by lowering
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Figure 1. Generalization errorE for α = 0.01, correlationb = 0.2, s = 20 examples and
various activities (below) and phase diagram fora = 0.2 = b and the sames (above) as
functions of the thresholdθ for monotonic three-state neurons.G denotes the generalization
phase,S the phase of self-sustained activity andZ the fully disordered phase.

the activity the noise term in the local field is more effectively suppressed than the main
part favouring a recognition of the concepts by the state of the network. If the threshold
is too large, however, the inactive part of the neurons becomes more important and the
recognition of the concepts is harder. In the upper part of the figure we exhibit the phase
diagram for the recognition ratioα as function ofθ , for the same monotonic gain function
with the values ofa = 0.2 = b and s = 20. Thus, the network manages to recognize the
concepts only ifα is below a criticalαc, beyond which the network remains active in the
self-sustained phaseS with dynamic activity, but fails to recognize the concepts. As one
would expect, when the threshold is too large even the dynamical activity is suppressed and
only the zero state,Z, remains. There is no chaotic phase in this case and the transitions
between the various phases are discontinuous.

Next, we consider various forms of non-monotonic neurons with a transfer function that
has some sort of a cut-off but no threshold. All of these yield irregular, in addition to fixed-
point behaviour with a time-dependent generalization errorEt , even for longt . For the
purpose of comparison, the results are presented in the following figures fora = 0.2 = b,
s = 20 and the generalization curvesEt(θ) are shown forα = 0, that is, for a finite number
of concepts. This is to emphasize that, for the present model, the irregular behaviour is not
due to a macroscopic number of concepts that the network attempts to recognize.
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Figure 2. Generalization errorEt for α = 0 (below) and phase diagram (above) as functions
of θ , for the same values of the other parameters as in figure 1 for non-monotonic three-state
neurons.C denotes the chaotic phase.

First, we deal with the three-state gain function equation (13). The drastic effect of the
fatigue on the generalization ability is exhibited in the lower part of figure 2. When the
threshold is large enough one expects to have regular behaviour with a time-independent
generalization error,E, in which there is good generalization because the local fields are
almost everywhere within the sigmoidal regime of the neurons. This region of fixed-
point behaviour goes over into a periodic cycle-two attractor whenθ is about 1.4, and the
probability of the local field being lower than the threshold becomes important. Whenθ

is about 0.9 a pair of discontinuities appear with a further period doubling and chaotic
behaviour somewhat below. The interpretation for the first period doubling is that the
network is in a waiting mode [18] in which the collective state of the neurons hesitates in
a state between a clear and a poor recognition of the concepts. This state is characterized
by a pair of finite overlaps with the concepts. Such hesitating behaviour is more visible for
the other irregular states.

The phase diagram in the upper part of the figure, in which the transitions are
discontinuous, exhibits the ‘chaotic’ phase(C) in which the irregular behaviour takes place.
It is interesting to note that if the threshold is such that a network trained with the examples
of a finite number of concepts (α = 0) is in the waiting mode, training with the same number



Generalization and chaos in a layered neural network 1411

Figure 3. Generalization error (below) and phase diagram (above) for non-monotonic binary
neurons with the same parameters as in figure 2.D is the period doubling phase.

of examples of a macroscopic number of the concepts, for whichα is finite, may lead to a
recognition of concepts in the generalization phase. This somewhat unexpected behaviour
is illustrated in the figure by the re-entrance of the generalization into theC phase.

The case of the two-state non-monotonic transfer function, equation (14), is particularly
interesting sinceθ inverts the sign of the neurons without an inversion of the sign in the
local field, and the results are shown in figure 3. Consider first the lower part of the figure
obtained with the initial conditionsmst=0 = qt=0 = rt=0 = 1 for the dynamic relations.
The strange behaviour can be qualitatively understood in the following manner. When the
threshold for inversion is large enough, the network is expected to behave in a similar way to
that for a sigmoidal gain function with good generalization. As this threshold is decreased,
the local field may exceedθ and the network falls in a region of poor generalization, when
1.55 < θ < 1.70. The crossing atEt = 1.0 (M = 0) whenθ ∼ 1.60 indicates that the
number of wrong neurons surpasses the correct ones and the sign inversion effect starts to
take place. When 1.20 < θ < 1.55, the fluctuation of the local field aroundθ becomes
important and a chaotic behaviour appears, which ends abruptly when the threshold goes
below a value for which the state of the neurons starts to fluctuate randomly giving a
vanishing average for the overlap with the concepts. Belowθ ∼ 0.40, the neurons are
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almost everywhere in the inverted regime and the response is each time the opposite of that
at the previous time. Thus, a concept and its inverse are successively recognized. Note that
the generalization is asymmetric until the number of wrong neurons matches the correct
ones.

The phase diagram in the upper part of the figure shows theD phase where period
doubling occurs, while the other phases are those described before. There is a slight re-
entrance of the generalization phase into the chaotic phase which should persist for other
values ofa, b ands. Here again, the transitions are discontinuous.

The behaviour of the network with the usual tanh(h/θ) analogue transfer function is
qualitatively the same as that for three-state neurons, including the phase diagram ofα in
terms ofθ , except that the phase transitions are continuous, so this case does not need to
be discussed any further.

More interesting is the case of a non-monotonic analogue transfer function. The
generalization performance for the function given by equation (15) is shown in figure 4. The
reason for the behaviour that appears is the following. Whenθ is large, the small growth
rate of the state of a neuron requires the build up of a large local field for an appropriate
firing to recognize the concepts. This is unlikely and thus, the network fails to generalize.
On the other hand, ifθ is small, the growth rate becomes large and firing could take place
for small values of the local field, but the cut-off also decreases. Thus, there can be at most
an intermediate region of values ofθ where one can have acceptable generalization, but this
is spoiled again by the onset of a period doubling regime followed by a chaotic region for
smaller values ofθ . For large and small values ofθ one expects theS phase to appear, and
theG andC phases for intermediateθ . Note that there is again a re-entrance of theG into
the C phase, as in the case of non-monotonic three-state neurons, figure 2, showing that
training of the network with the examples of a sufficiently large number of concepts may
be advantageous in restoring the generalization ability lost due to the presence of irregular
behaviour. Thus, one can see that although the onset of the chaotic regime may differ in
details between the case of discrete against continuous neurons, it is present in both of them.

6. Conclusions

We studied the generalization problem in a feedforward layered neural network in which
a set of concepts is to be recognized when the network is only presented with examples
in the training stage. A modified Hebbian learning rule has been used and we found that
for non-monotonic neurons, in addition to fixed-point behaviour, irregular behaviour may
appear with period doubling cascades ending in a chaotic regime. As the comparison of
our results with the case of monotonic neurons shows, the irregular behaviour in this model
is not due to the fact that the synaptic matrix is not symmetric and that the model has no
Hamiltonian. It is expected, in general, that such models should exhibit a rich dynamical
behaviour. The interest of our work for the understanding of neural network behaviour is not
in the different structure of irregular attractors that may appear, which seems to depend on
the form of the specific non-monotonic transfer function, but rather to point out the existence
of this behaviour which seems to be there whenever the neurons are not monotonic. The
interesting feature is the possibility of avoiding irregular behaviour for either multi-state or
analogue non-monotonic transfer functions, by training the network with a fixed number of
examples of a sufficiently large set of concepts, as shown in figures 2 and 4.

The work presented here generalizes previous results showing the presence of irregular
attractors for the retrieval problem in a diluted network [18]. It has been proposed there that
behaviour associated with such attractors means that the neurons are in a waiting mode in
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Figure 4. Generalization error (below) and phase diagram (above) for non-monotonic analogue
neurons with the same parameters as in figure 2.

which the network fails to classify or disclassify the initial state as a condensed pattern taught
to the network. In the context of our work, the presence of irregular attractors suggests
the existence of a waiting mode in which the states of the network fail to recognize the
concept used as a seed in the initial configuration. Some memory of this seed is preserved
yet, because the waiting mode is characterized by a non-zero overlap with the concept.
A waiting mode may be associated with big uncertainty, as illustrated by our results in
figures 2 and 4 for the lower values ofθ . There are other cases where this uncertainty may
be greatly reduced as in the case of the linear analogue non-monotonic transfer function
Fθ(h) = h/θ , for |h| < θ and zero otherwise. For this case we found a reduced dispersion of
the overlap with the concepts in the regime of irregular behaviour and either generalization
with a partial recognition of concepts is possible or else theS phase may be reached outside
that regime.

Due to the architecture of the layered network considered here, the local fields are
Gaussian random variables [13] and the dynamics can be solved exactly. It would be
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interesting to investigate multi-state neural networks for the generalization problem in more
complex architectures.
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